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THERMAL STRESSES I N  C H E N I C A U Y  HARDENING ELASTIC PEDIA 
WITH APPLICATION TO TK% MOLDING PROCESS 

by 

Myron Levitsky and Bernard W. Shaffer 

Abstract 

A method has been formulated fo r  the determination of thema1 

s t resses  i n  materials which harden i n  the  presence of an exothermic 

chemical reaction. 

material  from an inviscid l iquid-like s t a t e  i n to  an e l a s t i c  solid,  where 

intermediate s t a t e s  consist of a mixture of the two, i n  a r a t i o  which is  

determined by the  degree of chemical reaction. Constitutive equations 

for  the t rans i t iona lmixture  a r e  derived from the s t r a in  energy of i t s  

component par ts  i n  a manner consistent w i t h  the  treatnent of a horrogeneous 

e l a s t i c  material  whose properties vary wi th  time. 

Hardening i s  described as the transformation of the 

The method i s  i l l u s t r a t ed  i n  terms of an i n f i n i t e  slab cast  between 

two r ig id  mold surfaces. 

the slab surfaces vanishes i n  the residual  s ta te ,  so that removal of the 

slab from the mold leaves the remaining residual  s t r e s s  unchanged. 

other hand, the residual  s t r e s s  cmponent pa ra l l e l  t o  the slab surfaces does 

It is  found that the stress component normal t o  

On the 

not vanish. 

of t he  hardening process. 

I ts  dis t r ibut ion i s  described as a function of the parameters 

Introduction 

The fabrication of concrete structureso the forming of some plast ics ,  

and other similar processes of prac t ica l  i n t e re s t  require the introduction 

of l iquid-like material  i n to  a mold where it so l id i f i e s  during a chemical 

reaction which generates heat, The l iberat ion of heat during th i s  exothermic 

reaction and i t s  subsequent dissipation t o  the  surrmndings induces t ransient  



temperature gradients wi th in  the hardening material, which i n  turn give 

rise t o  a system of time dependent thermal s t resses ,  

the chemical reaction, the  temperature of the material  eventually returns 

t o  a uniform ambient s t a t e ,  i n  which s t resses  can remain locked in to  the 

material. These a re  called residual  thermal s t resses .  

Upon completion of 

To the  best  of our knowledge, no analyt ic  treatment of the  development 

of res idual  thermal s t resses  i n  chemically hardening media has appeared i n  

the l i t e ra ture .  Single aspects of the problem, such as  thermal s t resses  due 

t o  i n t e r n a l  heat generation, t ransient  thermoelastic phenomena, and the  vari-  

ation of material  properties with temperature have been considered. Related 

information w i l l  be found, f o r  example, i n  t he  work of Wengr17*, Shaffe&*’, 

Lee and Rogers‘ 3’ Muki and SternberJ 47 , and Lee, Rogers and Wo& 57 . There 

are,  however, two basic  differences between the problem presently under d is -  

cussion and those treated i n  the aforementioned referencesc 

perature d is t r ibu t ion  r e su l t s  frm heat generated within the material  by 

Here, the  tem-  

chemical reaction rather  than by passive cooling of the medium from an 

elevated temperature. I n  addition, the variation of material  properties 

i s  taken exp l i c i t l y  t o  be a function of time through dependence of the 

process upon the  degree of hardening, and related t o  temperature only by 

v i r tue  of the fact tha t  the latter is also a function of time. 

In  order t o  formulate a p rac t i ca l  approach t o  what i s  evidently a 

cmplex problem, consideration w i l l  first be given t o  t h e  derivation of 

sui table  const i tut ive equations f o r  the material  during the hardening processa 

Toward th i s  end, it is  convenient t o  assume a model f o r  the reacting material  

which can be analyzed i n  a r e l a t ive ly  simple way? yet which contains those 

character is t ics  of the mater ia l  which a re  s ignif icant  t o  the  problem, The 

4+ 
Superscript numbers i n  brackets r e fe r  t o  References l i s t e d  i n  the  
Bibliography, 



i n i t i a l  s t a t e  of the reactants i s  taken t o  be tha t  of an inviscid l iquid,  

which changes i n  the course of the  hardening reaction in to  a homogeneous 

e l a s t i c  sol id ,  During the hardening process, the material  i s  postulated 

t o  be a uniform amorphous mixture of two components, one of which i s  the 

unreacted phase and the other i s  the filly reacted product, combined in  a 

r a t i o  which varies according t o  the degree of chemical reaction, 

b i l i t y  of any intermediate product is  thereby ignored. 

The possi- 

As an additional 

simplification, the density of the reactants and products a re  taken t o  be 

equal, so t h a t  the degree of reaction i s  the same whether measured on a 

volumetric or gravimetric basis. 

The s t ructure  of the reacting material  while hardening i s  unknown 

so tha t  the s t ress -s t ra in  l a w  of the composite cannot be developed in  terms 

of the s t ruc tu ra l  description, Instead, it i s  approached from a mathematical 

point of view tha t  is consistent w i t h  the  existence of a s t r a in  energy dens i ty  

function fo r  the hardening mixture. This problem is  in  several respects 

re la ted t o  the formulation of a s t ress -s t ra in  law f o r  porous media, which 

has been discussed, among other, by B i ~ t r ~ ’ ~ ’ .  The formulation of e l a s t i c  
/ 

and thermoelastic const i tut ive equations f o r  composite media has a l so  been 

studied recently by Green and Naghdi f8p91 and Rosen and Hasin l i0 , l l I  

D e t e r h a t i o n  of the  residual  thermal s t resses  occurring i n  the 

hardening process requires a pr ior  knowledge of the thermal h is tory  of t h e  

material, Expressions 

chemical generation of 

have been discussed by 

f o r  the temperature dis t r ibut ion produced by the 

heat, i n  an analyt ic  form sui table  f o r  use here 

Levitsky and Sha f fe J  E’ e Follawing the  derivation 

of the desired const i tut ive equations, the thermal and e l a s t i c  aspects w i l l  

be combined i n  the solution of res idual  thermal s t resses  which a r i s e  during 

the casting of a wall  between i n f i n i t e  mold surfaces, a process of prac- 

t i c a l  in te res t ,  



Micromechanics of the Reacting Mixture 

I n  the  m o d e l  of the hardening material  under discussion, each 

component of the mixture behaves i n  accordance with a wel l  defined con- 

s t i t u t i v e  equation which re la tes  the microstress t o  the mfcrostrain in  

that component, 

hardened stage, the material properties of the  mixture correspond t o  one 

or the other of the components. 

however, the  const i tut ive equations nmst take in to  account the varying 

composition of the material  and are  required t o  r e l a t e  the nominal s t r e s s  

t o  the nominal s t r a i n  of a two-component material. The nominal s t r e s s  i s  

understood t o  represent the force per un i t  area on a d i f f e ren t i a l  element 

which encloses both components of the mixture, whereas the nominal s t r a in  

is  a sui tably defined quantity which measures the deformation of the  afore- 

mentioned d i f f e ren t i a l  element, 

Hence a t  t h e  i n i t i a l  stage and l a t e r  a t  the fully- 

A t  an intermediate stage of hardening, 

It is  convenient i n  order t o  develop the const i tut ive equations 

applicable t o  the intermediate stage of hardening t o  employ a non- 

conventional double subscript notation t o  ident i fy  components of s t r e s s  and 

s t ra in .  According t o  the  suggested double subscript notation, t he  first 

index assigned t o  a stress or  s t r a in  component w i l l  be c, 0 ,  OT 1, 

intended to-designate the composite, component 0, or component 1. Thus, 

when the  f irst  index i s  c it indicates nominal values of stress and 

i l e  0 and 1 refer t o  microstresses and microstrains of com- 

ponents 0 and 1 respectively, The second index i s  a number from 

1 t o  6 which ident i f ies  the s i x  components of stress or s t r a i n  i n  accord- 

i t h  the convention that 3 = xx, 2 = yy, 3 = zz, 4 = xy, 5 = yz, 

The volme fraction occupied by component 0 i n  the mixture i s  

designated M while the volume f rac t ion  of component 1 i s  ( 1  - N) e 

4, 



It is assumed i n  describing the chemical process, t ha t  N a l so  corresponds 

t o  the  degree of the chemical reaction, Thus component 0 represents the 

f u l l y  hardened material, and properties designated by the subscript 0 are  

those f o r  the f i l l y  hardened material. 

Each component of the mixture is assumed t o  be e l a s t i c  and obey 

Hooke's Law, so  t h a t  a strain energy density function may be associated 

with each component. Since the strain energy density i s  an intensive 

scalar  property, and there  i s  assumed t o  be no energy of interaction, the 

s t r a in  energy density of the mixture may be writ ten i n  terms of the s t r a i n  

energy density of each component, per un i t  volume of the mixture, by the 

relat ion 

x = Nxo + (l-N)nl 
C 

According t o  the def ini t ion of the s t r a i n  energy densit& 137 

and an = ulJ , it follows that 1 and since and& = u oj o j  

The stress components CT and u can be expressed i n  terms of E 
03 Ij oj 

and E when tne  stress-strain laws fo r  the two components are  known. 

If ,  however, Equation (3) i s  t o  lead t o  a stress-strain law fo r  the  mixture 
13 

as a function of i t s  nominal stress and strain components, then the E 
o j  

and E mst be specified as f'unctions of the eci a Ordinarily, such a 
lj 

re lat ion can be obtained from a knowledge of the microstructure of the 

material, but a descr ipt im of the substructure i s  assumed t o  be not availablee 

5 .  



Instead, l e t  us consider the nature of the relat ions of t he  micro- 

s t r a ins  E and E t o  the nominal s t r a ins  E , and the nature of 

the re la t ions  of microstresses cr and cr t o  the nominal s t resses  

(J which are consistent w i t h  the derivation of a s t ress -s t ra in  l a w  f o r  

the composite material  from the s t r a i n  energy densi t ies  of the components. 

03 Y c j  

03 13 

c j  

A s  i n  the case of every e l a s t i c  material, if there is t o  be a nominal 

s t ress -s t ra in  law fo r  the mixture of the  form cr 

must be able t o  construct a complementary s t r a i n  energy density 

the s t r a i n  energy function 

so tha t  

= anc/&& , then one 

from 
c i  - 

R C  

9 
f' 13 9 14' 

nc by means of a Legendre Transformation 

6 - 
II = - I C c +  c 

f=l C 

It then follows that a s t ra in-s t ress  l a w  

s t r a in  energy density i n  the form eCi = 

assmes tha t  a l l  dependent v a r i a b l a  cCi 

i = l s r e r e 6 ,  taken as 

As a consequence of Equatioris (1) 

c i  ' components cr 

i s  derivable from the complementary 

asr/acrci e This formulation implici t ly  

a re  functions of the s i x  stress 

energy density of the mixture may be wri t ten 

independent variables e 

and (4), the  complementary strain 

( 5 )  

When the Legendre Transformation i s  applied separately t o  the s t r a in  energy 

density of each component, the r e su l t  may be expressed i n  the form 

6 - 

and 6 

i=l 

- - ICl = n1 - c crli€pi 

6 ,  



Substi tution of Equations (6) and (7) i n to  Equation (5)  leads t o  

Therefore, it i s  found by formal application of the  rules  of p a r t i a l  

d i f fe ren t ia t ion  tha t  

Each component of the mixture i s  a homogeneous e l a s t i c  medium and i t s  

complementary s t r a i n  energy density i s  w e l l  defined so tha t  &ddc70i = E 

Hence the first and sixth,  and second and eighth temis and dz1/auli = E 

i n  Equation (9) cancel i n  pairs. Also note tha t  the oci axe the independent 

oi 

li * 

where 6 is the Kronecker de l ta ,  
'ik i k  s t r e s s  variables so that auc i /hck  = 

defined as zero when i # k and m i t y  when i = k . Thus Equation ( 9 )  re-  

duces t o  

If the composite material  behaves as an e l a s t i c  Hookean medium, 

a'c/auck = so that 



Any assumption relat ing the microstrains t o  t,he nominal s t ra in ,  

or the microstresses t o  the nominal stress must be consistent w i t h  the  

preceding relation, This relat ion admits, among others, two simple 

formulations t o  be l isted as  (a) and (b): 

(a) Each component of microstrain i s  equal t o  the corresponding 

nominal s t ra in ,  i n  accordance w i t h  the equality 

Equation (XL) then becomes 
cCi = coi = E= e 

Assumption (a) is  associated w i t h  the physical implication tha t  both 

components are  constrained by the microstructure t o  deform equally, 

and tha t  there i s  no r e l a t ive  motion between them. Since k in  Equation 

(E!) i s  arbi t rary,  and a t  least one of the  d i f f e ren t i a l  quotients 

aEi/duk must be non-vanishing fo r  any k in  order t o  have a 

l a w ,  it i s  apparent that Equation (E) w i l l  be sa t i s f i ed  only 

0 c i  = NUoi -+ ( l -N)Ul i  

st ress-s t ra in  

i f  

I n  a homogeneous, random mixture of two components, the volume 

fractions N and (1-N) a lso  represent f rac t iona l  area occupied by each 

component i n  an exposed cut taken through the compositer7’ e Frm this  

point of view, Equation (13) together w i t h  assumption (a) indicates a 

corollary interpretation t o  the e f fec t  t ha t  the nominal s t r e s s  of the 

composite i s  equal t o  the sum of the area-weighted microstresses 

i n  each of the components of the  composite, 

(b) Components of the microstress a re  equal t o  each other and t o  

the associated nominal stress i n  accordance w i t h  t he  equality 

Equation (p1) then becomes 
uCi = uoi = uli 

% e  



Since the s t r e s s  components a are independent variables and each may 

be assigned a value a rb i t r a r i l y ,  the  preceding equation requires each 
i 

coefficient of the  ai t o  vanish independently, or 

a pt: - Neoi zk I ci. 

With k arbi t rary,  the terms i n  parenthesis [eci - 
be a function of and may a t  most be equal t o  a 

is t o  be s t r a i n  free when each of the cmponents is  
uk 

must be zero, and it follows that 

E c i  = + (l-N)Eli 

constant. If the mixture 

s t r a i n  f ree ,  the  constant 

It is  easy t o  visual ize  such a re la t ion  between s t r a ins  i f  the composite 

consisted of sheets or lamina of the  component materials occupying the 

volume fractions specified, and the s t r a ins  related by Equation (16) were 

normal t o  the lamina. 

I n  order far the s t ress -s t ra in  l a w  t o  be derivable f’rm the  com- 

plementary strain energy density, assumptions (a) and (b) were made regarding 

the re la t ion  of nominal s t r a i n  t o  microstrain, and n m i n a l  stress t o  micro- 

stress respectively. 

t o  coroUary r e s t r i c t ions  on the  stresses i n  (a) ,  and as a consequence of 

Equation (16) t o  the r e s t r i c t ions  on the s t r a ins  i n  (b),  

For the formulation t o  be self-consistent,  the  same conditions must 

These led as an immediate consequence of Equation (E) 

a r i s e  i n  the derivation of a s t ress -s t ra in  

energy density function, 

then 

fram the composite s t r a i n  

If according t o  assumption (a) ,  
6 cj = t: oj = Epj 9 

and Equation ( 3 )  shows tha t  OJ ./at:ci = aeIj/aeci = ‘ij 



CY c i  = Nooi f (l-N)Gli (13) 

In  the case of assumption (b), where CY = 5 Equation ( 3 )  

leads t o  the relat ion 
c j  o j  = *lj ' 

Equation (17) w i l l  be sa t i s f ied  ident ical ly  i f  

E c i  = Neoi f (I-N)eli 

and & = 0 and /deci = 0 when i # j , because the former 

condition implies 
03 13 

c i  li a; = N + 0 - N )  
01 o i  

The la t te r  condition i s  necessary because the s t r a i n  components ac t  independ- 

ently, 

make note of the f a c t  that even though summation on j is  required only j = i 

To show tha t  the preceding conditions do satisfy the Equation (171, 

w i l l  survive because of the independence of s t r a in  components, so tha t  

i s  obtained, When the term within the braces i s  placed over a cannon 

denominator, it i s  seen t o  be equal t o  unity, so that  the ident i ty  does 

hold, Thus the assumed relat ion of the microstrains t o  the nominal s t ra ins  

of case (a), and microstresses t o  ncminal s t resses  of case (b) i s  consistent 

10 * 



w i t h  the derivation of a s t ress -s t ra in  l a w  from 8 s t r a in  energy density 

function taken as the sum over the individual s t r a i n  energies, and t rea t ing  

the composite as an e l a s t i c  medium, Furthermore, if Equation (11) i s  sa t i s f ied ,  

the  complementary s t r a i n  energy density of the  composite material  i s  the sum, 

weighted by volume fractions,  of the complementary s t r a in  energy densit ies 

of the component materials. None of the  preceding i s  i n  any way restr ic ted 

by the s t ress -s t ra in  l a w  fo r  the component materials so long as each i s  

derivable from a s t r a i n  energy density function, 

Relation of Stress  Rates, Strain Rates, and Composition 

When hardening occurs i n  the presence of a chemical reaction, t h e  

microstructure of the mixture changes continuously with time, so tha t  under 

the influence of loads, the consti tutive equations must r e l a t e  the s t ress  

r a t e  and the  s t r a in  r a t e  wi th  material  properties prescribed as functions 

of time. Such relat ions may be formulated i n  the following manner, F i r s t ,  

d i f fe ren t ia te  the s t r a i n  energy density of the composite with respect t o  

2, 
The superscript dot (' ) 

multiply the  r e su l t  by the  corresponding s t r a i n  r a t e  component 

and sum over a l l  components of the s t r a i n  raCe. 
i '  E 

s ign i f ies  a p a r t i a l  derivative w i t h  respect t o  time, 

chain r u l e  of partial different ia t ion tha t  C ( & I / ~ E ~ ) ; ~  = , Finally, 

Then observe from the 

i 
different ia t ion of the  last  expression with respect t o  ei shows that 

The p a r t i a l  derivatives a2rr/&f of Equation (21) a re  %he instantaneous 

e l a s t i c  coefficients of the material, Consequently, the s t ress-rate  strain- 

r a t e  equations may be obtained from the custamary stress-s t ra in  law for  an 

e l a s t i c  material  by replacing s t resses  and s t r a ins  wi th  t h e i r  time derivatives, 

11, 



and by interpret ing the e l a s t i c  coefficients as functions of t i m e  and position. 

I n  order t o  apply the preceding r e su l t s  t o  a material  t ha t  i s  

reacting chemically and simultaneously hardening, l e t  us replace the material 

by a model consisting of a two component mixtureo The first component 

occupiep the volume fract ion N and i s  the e l a s t i c  end product; the second 

component occupies the remaining volume fract ion (1-N)  and i s  the l iquid- l ike 

unreacted material. For simplicity, the const i tut ive relat ions w i l l  i n i t i a l l y  

be formulated as re la t ions between s t r e s s  and s t ra in .  Subsequently, these 

w i l l  be generalized as  r a t e  equations which include the effect  of the t ransient  

temperature distribution. 

The f i r s t  component of the mixture consisting of the e l a s t i c  end 

[: 13 9 151 product obeys Kooke s law 

where E i s  the modulus of e l a s t i c i ty ,  p, i s  Poisson’s r a t i o  and g is  

the shear modulus, The coefficient E o / ( l - a 0 )  is equal t o  three times 

the bulk modulus KO 

be represented by the  relat ions 

so  that the equations f o r  the normal s t resses  can 



It i s  eas i ly  confirmed tha t  the  previous s t r e s s - s t r a in  equations are 

derivable from a s t r a i n  energy density function of the form 

Eo (E2 +E2 +E2 ) 
+ b w  04 05 06 

The second component of the  mixture i s  a l iqu id- l ike  material w i t h  

zero shear modulus, The corresponding s t r a i n  energy density mnction can 

be obtained from Equation (24) by replacing the  subscript  

subscript  1 

( 3 K  - 2 ~ ) / 6 ~  + 2G) e 

the  l iqu id- l ike  component may be wri t ten 

o w i t h  the 

and noting that  Poissonts Ratio may be expressed as 

Thus with G = 0 , the  s t r a i n  energy density for  

Substi tution of Equations (24) and (25) i n t o  Equation (11) shows that  t h e  

cmpos i te  s t r a i n  energy density i s  expressible as 

E .N n n n  n 

The nominal s t r e s s  components may be computed from the composite 

s t r a i n  energy density f'unction by taking p a r t i a l  der ivat ive with respect 

t o  the  appropriate nominal s t r a i n  component, so that 

13 4 



According 

an s 01 

e 02 

an 

an e 03 

while fo r  

Therefore 

t o  the consti tutive relat ion f o r  the f i rs t  component, 

the second component, 

= K ( E  +E +E ) j = 1,2,3 5 1 l . l l 2 1 3  

(The shear terms of Equation (30) have been omitted i n  order t o  

the expression, They subsequently drop out.) 

Throughout the process the  chemically reacting material  

(30)  

short  en 

remains a 

homogeneous mixture of two components, w i t h  a time dependent canposition. 

There i s  no separation of the  components, nor is  there  any f l a w  of the unreacted 

material  with respect t o  the  so l id i f ied  component, Thus it seems reasonable 

t o  assume t h a t  not only a r e  the s t ra ins  i n  the  reacted and unreacted compon- 

14 



ents equal t o  each other, but t ha t  they a re  a l so  equal t o  the nominal 

s t r a in  of the mixture, I n  effect ,  the unreacted l iquid- l ike component 

i s  locked i n t o  the matrix of the so l id i f ied  part of the composite 

material. If it i s  assuned fur ther  that the components of s t r a i n  i n  

different  directions ac t  independently of each other, we a re  led t o  the 

s e t  of conditions which were described as  case (a) of the previous section, 

wherein cCi = coi = , from which it follows tha t  d ~ ~ ~ / &  = 0 and 

&,,/b€ = 0 fo r  i f j e Equation (30) with i = l ,2 ,3  then may be 

writ ten 

c j  

c j  

I n  the calculations t o  follow, it is convenient t o  assume tha t  the 

bulk noduli of the  unreacted and f u l l y  so l id i f ied  materials a re  equal, and 

thus 

(3K - 2 ~ ~ ) / ( 6 ~  + 2G ) 

modulus . 
posite material  w i t h  a fixed composition, 

hardening process where 

represented as a r a t e  equation writ ten 

Kc = KO - - K1 e Furthermore, Poisson's Ratio uo can be expressed as 

and eliminated frm Equation (33) i n  favor of the shear 
0 

With the preceding substi tutions,  Equation (33) describes the com- 

To incorporate the e f fec t  of $he 

N is  a f'unction of time, Equation ( 3 3 )  must be 

- = [K + 7 4 GoN(t ) lGxx t. rK - 7 2 GoN(t)](;w+;zz) c 1 -  xx J 

0 'c2 = = [K 3. 7 4 GoN(t)l; + $K - 7 2 GoN(t)](; +; ) - 3 Y  - xx zz (34) 



It i s  pertinent t o  observe tha t  the preceding consti tutive relat ions for  

the mixture a re  s ta ted wholly i n  terms of nmina l  variableso 

In  order t o  complete the  formulation of the s t ress-s t ra in  laws for  

the composite material, a specification for  the shear cmponents i s  necessary. 

Since the f lu id- l ike  second component has zero shear modulus, it does R o t  

sustain any shearing s t r e s s  and hence contributes nothing t o  the shear 

terms of the  composite s t r a in  energy density, 

Equation (26) can be rewritten 

Therefore w i t h  Go = E$(l+tJ.o) 

(264  x = NGo [Eo4 2 + eo5 2 + E:] + normal terms 
C 

The shear stress components may then be determined by the relat ion 

C 3 i = 4,5,6; j = 4,5,6 
an 

0 = a z = N G o  C E  
c i  03 ci c1 j 

(35)  

Under the assumption tha t  

fore  
cCi = E oi = E l i  Y 

a€ = 6ij and there- o j  c i  

[T c i  = NGOEoi i = 4,’jy6 (36)  

In  accordance w i t h  the  concepts associated with Equation (21), the  corres- 

ponding r a t e  equations may be writ ten 

With the microstrains and nmina l  s t ra ins  equal t o  each other, the s t r e s s  

r a t e  - s t r a i n  r a t e  l a w  fo r  the shear components of the composite material  

a r e  given by Equation (37 )e  

The effect  of temperature upon the s t ress -s t ra in  equations could 

have been included, - ab in i t i o ,  i n  the specification of the s t r a in  energy 
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density, but was omitted i n  the in t e re s t  of c l a r i t y  and conciseness, It is 

now introduced by noting tha t  i n  the presence of a temperature change T 

the t o t a l  normal component of s t r a i n  E 

e, plus the therxnal s t r a i n  a P T  I, where M a  is the  coefficient of 

consists of the e l a s t i c  s t r a i n  i 

I 

thermal expansion, 

material property 

mixture, I n  terms 

Replacement of the 

In  the  s i tua t ion  currently under consideration, the 

a' i s  assumed t o  be equal f o r  both components of the 

of s t r a in  ra tes ,  the foregoing concept may be expressed 

b 0 0 

E i = e. 1 + a@T (38 1 

t o t a l  s t r a in  r a t e  components of Equations (34) by t h e i r  

equivalent as prescribed by Equatior, (38) leads t o  the  relat ions 

G N(t)]; + [K - 7 2 G0I?(t)](lXX + ) - 3KCl't YY 3Y zz (39) 

Temperature does not enter d i r ec t ly  i n t o  the formulation of t h e  consti tutive 

equations fo r  the  shear cmponents, and therefore the  s e t  of Equations (37) 

remains unchanged. 

An a l te rna te  form f o r  Equations (39), writ ten i n  terms of Poisson's 

Ratio which i s  a function of t i n e ,  is  algebraically usefule With 

3K - 2GoN(t) 
'(t) = 6K + 2G0B(t) 

Equations (39) can be rewritten t o  read 



In  t h i s  form, the s t r e s s  rate - s t r a i n  rate l a w  f o r  the composite material  

i s  canparable w i t h  the s t ress -s t ra in  law f o r  an isotropic,  homogeneous 

e l a s t i c  ma.tueria1, where the stresses and s t r a ins  have been replaced by the i r  

p a r t i a l  derivatives with respect t o  time, the bulk modulus is constant, 

while Poisson's Ratio i s  a function of time. 

Casting of an I n f i n i t e  S lab  

Let us consider the fabricat ional  process by which an i n f i n i t e  slab 

of uniform thickness i s  cast  between two in f in i t e ly  r i g i d  pa ra l l e l  planes. 

In  the analysis of such a problem aU. spa t i a l ly  dependent quantit ies 

a re  functions of the thickness coordinate. A s  a matter of convenience, 

t h i s  coordinate w i l l  be made dimensionless, by normalizing it wi th  respect 

t o  the wall  thickness, 

The thermal problem associated w i t h  the aforementioned fabricat ional  
El process, and I t s  solution have been discussed previouslJ , so tha t  only 

a brief summary of resu l t s  a re  required here, 

r a t e  a t  which a material hardens i s  assumed t o  be a function of the  con- 

centration of the reactants, and independent of variation in  the temperature, 

the degree of reaction N can be written 

It was shown that  when the  

2 -v r 
(42 1 N = l - e  

2 The dimensionless time z i s  measured by the Fourier Number Rt /L  , where 

%I is  the t h e m a l  diff 'usivity of the wall material, t i s  physical time 



and L is the physical thickness of the wall. The quantity 3 is 

here called the reaction rate parameter, and is a dimensionless measure 

of the speed of hardening. 

quantities by the equality 7, 

of heat generation, and H is the VOlu.mek!.C heat of reaction. 

It is defined in terms of physically significant 
2 

= QoL2/31H where Qo is the initial rate 

Let us assume the initial temperature of the material in the mold 

is To and that not only are the mold surfaces initially at To , but 
they are maintained at the same temperature throughout solidification. 

During hardening heat is liberated as a result of an exothermic chemical 

reaction and the material in the wall undergoes a transient temperature 

distribution, which may be expressed in the form 

where 8 is the dimensionless temperature RT/E , E is the activation 

energy of the chemical reaction, and R is the universal gas constant. 

The coefficient f3 is equal to 3 (R/E)(H/?c) in which is the material 

density, and c is the specific heat. The wall thickness has been nor- 

malized to unity so that the variable x here denotes the dimensionless 

length x'/E , x' being the physical distance. 

2 

Stresses, strains, displacements and their partial derivatives 

with respect to time are solely functions of the normalized thickness 

coordinate x e Thus the relations between strain rates and displacement 

rates reduce to 

E = o  , E = o  - b; 
Exx-z yy zz 



while the equilibrium equations show that 

The elastic coefficients of the solidifying material are a 

f'unction of the fraction of reacted and unreacted components in the 

material. 

same, the bulk modulus remains constant during solidification; Poisson's 

Ratio, on the other hand, is determined by the composition of the mixture 

and is hence a function of time, as prescribed by Equation (40). It is 

furthermore convenient to define a dimensionless coefficient of thermal 

expansion a! equal to ~ * E / R  e 

Since the bulk modulus of each component was taken to be the 

With the substitution of strain rates from-Equation (44), and the 

replacement of T and a' by their dimensionless counterparts, the 

constitutive equations for the normal components of stress and strain 

heretofore given by Equations (41) can be written 

while Equations (37) for the shear stress components become 

o =  
XY 

In view of 

that 

Equations (45), as applied to 

0 (49) 

Equation (46) it can be seen 

20. 



The mold surfaces are immovable, and therefore the displacement 

components vanish at x = 0 and x - 1 . The material is stress-free 

when solidification starts? and the displacement components are measured 

from the stress-free state. 

conditions, the solution for the displacement u(x,2) may be obtained 

from Equation (50) by elementary integrations to be 

With the foregoing boundary and initial 

It is clear from the second and third of the equilibrium equations (45) 

and Equations (49), that &/& = 0 and bw/& = 0 . Since the displace- 

ment components v and w are independent of the coordinates y and z , 
the preceding results together with the initial and boundary conditions 

on v and w show that they must be identically zero everywhere. Con- 

sequently, in view of Equation (49), the two remaining shear stress 

components u and uxz must also vanish. The only non-vanishing 

displacement component is in the x direction, and only normal components 

of stress remain. 

XY 

Differentiation of Equation (51) with respect to x and Iz: 

followed -by its substitution into Equation (46) shows that the stress rate 

f l .  
u =-3mJ edx xx 

0 

The material is initially stress f'ree, so that integration of the preceding 

relation with respect to time, followed by the substitution of 0 from 

Equation (43) gives the result 



Integration of the previous expression than yields 

2 When the coefficient f3 is replaced by its equivalent d (R/E)(H&) , 
the stress normal to the mold surfaces takes the form 

There is no preferred orientation of the y and z axes within 

the wall, so that F,quations (47) and (48) show u and uzz to be 

equal as expected. With the designation u = uzz = u 

from Equations (47) and (51) that 

YY 
it is seen P V  YY 

1 

(56) 

When the temperature distribution of Equation (43) is introduced into 

Equation (56), the stress rate u is obtained in the form P 

;r 
P 

It 

of 

(57) 

contains Bisson*s Ratio 

the dimensionless time ‘C by combining Equations (40) and (42), 

, which may be expressed as a function 

eliminated from EQuation (57) the surviving expression shows 

that the rate of change of the parallel s t r ~ s ~  component can be expressed 

22 0 



i n  terms of the bulk modulus K and the shear modulus of the 

f u l l y  hardened material  Go , namely 

(59) 

Further simplification can result by defining 

A = 3m s i n  mx - 2 n 

and 

so tha t  EQuation (59) may be writ ten 

(62) 

W t i p l i c a t i o n  of the factors  under the summation sign shows tha t  

n = 1,3,5,... 
2 

-V'A G e-2v '+(,l2~ n o  G e n o  

To obtain the s t r e s s  component u from the previous expression, 
P 

each of the four series i s  integrated term by term with respect t o  the 

dimensionless t i m e  between l i m i t s  of 0 and Z . No arb i t ra ry  function 

of integrat ion Will appear because the material i s  assumed t o  be i n i t i a l l y  

s t r e s s  free,  so that 
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where 

Equations (64) and (65) define the distribution of the stress component 

‘parallel to the mold surface as a function of time. 

does not appear that the integrals of muation (65) can be evsluated 

Unfortunately, it 

for arbitrary time Z , other than numerically. In the limit as time 

becomes infinitely large, however, the integrals may be represented 

as a series whose general form is given by 

The solution associated with an infinitely large period of time is 

of particular interest because it then corresponds to the residual 

stress distribution. 

aid of Equation (66) and introduce the results into Equation (64) to 

Hence let us evaluate Equations (65;) with the 

find the residual stress 

24. 



Some simplification is possible with the use of Equations (60) and 

(61) and by noting that when the logarithmic term is written as a 

series its terms can be combined with the series that follows. 

After some algebra, it is found that 

n = 193,5 ... m = 1 9 2 9 3 * 0 .  

The parameter q , 
a function of Poisson's Ratio in the fuLly hardened material 

defined by muation (61) is also expressible as 

2 1 - 2uo- 
q - 5 L - u  0 1 

and Go can be eliminated from the leading coefficient of Equation 

(68) in favor of Poisson's Ratio. The parameter @ was defined in 

the thermal solution to be l) (R/E)(H/pc) 

coefficient of thermal expansion a! has been defined as CX'E/R . 
When these substitutions are made into Equation (68) it can be written 

2 while the dimensionless 

the equation for the parallel residual stress component 

lends itself most readily to computation and physical interpretation. 



Discussion of Results 

The problem of determining the stress history and the 

resulting distribution of residual stresses in a material which has 

hardened in the course of an exothermic reaction has been shown to 

require the simultaneous consideration of several factors. These 

include the temperature distribution which results from the chemical 

generation of heat, as well as the constitutive equations of a 

material whose properties vary with the degree of hardening, and 

hence vary with time. 

Porrnulation of the constitutive equations based upon strain-energy 

considerations has been introduced. 

equations to chemical hardening, it was assumed that the bulk 

modulus K is constant, and that solidification is the result of 

change in the shear modulus from zero to its final value in the 

I'ully hardened state. These assumptions, which make the mathematical 

solution tractable, are also acceptable from a physical point of view. 

To obtain the desired results, a unique 

In the application of these 

Consequent to the application of these considerations to the 

hardening of an infinite slab within rigid mold surfaces, equations 

have been obtained which define the time history of the stress com- 

ponent normal to the wall surfaces and the residual stress distribution 

parallel to the wall surfaces. 

The history of the normal stress component as a function of 

dimensionless time is given by Equation (55). It is immediately 

seen from the solution that the normal stress is compressive, is 

independent of the spatial location within the wall, and that it 

decays to zero at infinite time when the material is f'ully hardened. 

The latter observation also leads to the physically interesting con- 

26. 



elusion that there is no pressure between the cast material end the 

mold surfaces in the fully hardened state. 

within the casting is unaffected when the mold i s  finally removed. 

A set of representative curves obtained from Equation (55) for the time 

distribution of the dimensionless normal stress ratio o/KG' (H/pc) with 

different values of the reaction rate parameter 3 2  are shown in Fig. 1. 

The equations stress component parallel to the mold surfaces 

Hence the ste;te of stress 

contain integrals which have been evaluated in series form only for 

infini'e time. 

been presented in Equation ( T O ) .  Like the normal stress component, it 

is also seen to be proportional to the product of the bulk modulus, the 

coefficient of thermal expansion, and the maximum temperature rise (H/p) . 
However, unlike the normal stress, its residual distribution does not 

vanish, but remains as a function of space, Bissor's Ratio, and the 

reaction rate parameter in a complex manner. 

investigated numerically. 

The residual stress parallel to the mold surfaces has 

Its behavior will be 

Since the properties of bulk modulus, coefficient of thermal expansion, 

and the maximum temperature rise associated with the hardening reaction vary 

widely among different materials, the graphs which follow have been 

generalized by the use of the dimensionless stress coordinate 

The results may therefore be interpreted for and are applicable to all 

materials. 

in exothermic reactions has indicated that the significant range for the 

reaction rate parameter V 2  

Ratio po 

material. 

cover this range of material behavior, 

cr/KCX'(H/pc) . 

Our previous study of the temperature distributions arising 

is from about unity to five hundred. kisson's 

of course depends upon the properties of the fully hardened 

It may vary from near zero to one-half, The computed results 



Fig. 2 though Fig. 5 show the distribution of the residual 

stress component pmallel to its boundaries in a ha l f  section of the 

slab, for different values of Poisson's Ratio and the reaction rate 

parameter. Positive values of stress are tensile and are drawn above 

the zero stress axis, while stresses below the axis are compressive. 

In general, the state of stress parallel to the wall surface is seen to 

be compressive at the mold surface, but changes to a tensile stress in 

the interior of the slab. A reduction in Poisson9s Ratio is seen to 

increase the magnitude of the residual stress. 

The influence of the reaction rate parameter is striking and 

physically significant. A s  9 increases, the compressive stress at 

the mold surface also rises. 

stress becomes confined to an increasingly smaller region at the surface 

of the slab, while the interior is in a state of tension parallel to the 

surface. 

with increasing values of d * 
values of the reaction rate parameter, associated with very rapid hardening, 

the tensile stress becomes constant over a large part of the interior of 

the slab. Thus, depending upon specific design requirements, such distri- 

butions of residual stress can be significant, favorably or unfavorably. 

Especially for large values of the reaction rate parameter, the results 

seem to be similar to that induced in tempered glass in order to strengthen 

the surface against cracking, even though the procedure for obtaining the 

desired result may not be the same as the process currently under examination. 

At the same time, the region of compressive 

The tensile stress in the interior at first rises to a maximum, 

and subsequently decreases. For very large 

Summary and Conclusions 

A method has been formulated for determining the thermal stress 

distribution which results when a material, initially liquid-like, is 
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poured into a mold and hardens in the course of an exothermic chemical 

reaction. The method incorporates 8 themoelaslic constitutive law which 

relates rstre 

as a two-component mixture whose composition varies with the degree of 

reaction. 

the mixture behaves as an isotropic homogeneous elastic medium, whose 

properties result from the proportions of the two components, and whose 

stress-strain equations are derivable from a strain-energy density 

functio-1. 

rates to strain rates, and treats the hardening material 

The resulting constitutive equations have been chosen such that 

The method has been applied to the determination of residual 

stresses in a slab cast within a rigid mold. 

component normal to the mold surfaces vanishes in the fWly hardened 

material. The stress component parallel to the mold surfaces does not 

vanish, and is proportional in magnitude to the bulk modulus of the fu l l y  

solidified material, the coefficient of thermal expansion, and the maximum 

rise in temperature which would be induced in the material by an impulsive 

liberation of the heat of reaction. 

component has been found to vary in a complex manner with the Poisson Ratio 

of the f'ully hardened material and the dimensionless reaction rate. 

Results show that the stress 

In addition, the parallel stress 

The parallel stress component is compressive at the wall surfaces 

It increases in magnitude and tensile in the central region of the slab. 

inversely with Poisson's Ratio. 

slab is mall for very small and very large values of the reaction rate 

parameter, and reaches a maximum at some intermediate rate of hardening. 

The stress at the mold surfaces is consistently compressive, and increases 

in magnitude th the speed of the reaction. In addition, 

The tensile stress at the center of the 



occurs rapidly, the compressive stresses become confined to the surface 

gions of the wall. 

Concluding Remarks 

Even though details of the present analysis were confined to a 

discussion of the molding of a slab of uniform thickness, a technological 

process of significant importance, broader implications of the results 

obtained do exist and will be discussed in later publications. 
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Figure 2 

Variation of the Residual Stress Component 

with Dimensionless Distance from Surface 
for Several Values of Poisson's Ratio 

Parallel to the Slab Surface 

Reaction Rate Parameter 
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Figure 3 
Variation of the Residual- Stress Component 

Parallel to the Sla 
with Dimensionlees Dis t 
for Several Va 
Reaction Rat 
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Figure 4 
Variation of the Residual Stress  Component 

w i t h  Dimensionless Distance *om Surface 
Para l le l  t o  the Slab Surface 

for Several Values of Poi 
Reaction Rate Parameter 



Figure 5 
Variation of the Residual Stress Component 

Parallel to the Slab Surface 
with Dimensioniess Distance from Surface 

fo r  Several Values of Poisgon"s Ratio 
Reaction Rate Parameter = 500.00 
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